symmetric monoidal (∞,1)-category of spectra
The quantum Yang-Baxter equation has been proposed by Baxter in the context of a particular model of statistical mechanics (6-vertex model ??) and called star-triangle relation. Later it has been generalized and axiomatized to a number of contexts: it is most notably satisfied by the universal R-element in a quasitriangular Hopf algebra. In some context it is equivalent to a braid relation for certain transposed matrix. The solution to a quantum Yang-Baxter equation for matrices is called the quantum Yang-Baxter matrix or quantum R-matrix; some solutions to quantum Yang-Baxter equation have good limits in classical mechanics which are classical r-matrices, and the latter satisfy the classical Yang-Baxter equation.
With multiplicative spectral parameter, the equation reads
where the subscripts indicate which tensor factors are being utilized.
A. U. Klymik, K. Schmuedgen, Quantum groups and their representations, Springer 1997.
V. Chari, A. Pressley, A guide to quantum groups, Cambridge Univ. Press 1994
V. G. Drinfel'd, Quantum groups, Proceedings of the International Congress of Mathematicians 1986, Vol. 1, 798–820, AMS 1987, djvu:1.3M, pdf:2.5M
D. Gurevich, V. Rubtsov, Yang-Baxter equation and deformation of associative and Lie algebras, in: Quantum Groups, Springer Lecture Notes in Math. 1510 (1992) 47-55,doi
P. P. Kulish, N. Yu. Reshetikhin, E. K. Sklyanin, Yang-Baxter equation and representation theory: I, Lett. Math. Phys. 5:5 (1981), 393-403, doi
Last revised on November 26, 2019 at 07:32:07. See the history of this page for a list of all contributions to it.